A revolution in the search for dark matter through the LHC

Revolution in dark matter exploration: the Large Hadron Collider opens new horizons for understanding the universe

The Large Hadron Collider, located on the border of France and Switzerland, plays a key role in the search for dark matter. This powerful scientific device allows the creation of conditions similar to the Big Bang, which helps scientists explore the invisible aspects of the universe and the nature of dark matter.

Revolution in dark matter exploration: the Large Hadron Collider opens new horizons for understanding the universe
Photo by: Domagoj Skledar/ arhiva (vlastita)

In an underground tunnel on the border between France and Switzerland, at a depth of about 350 feet, lies the Large Hadron Collider (LHC), one of the most complex scientific instruments of today. This device, operated by CERN, is designed to collide protons at speeds close to the speed of light, creating conditions similar to those that existed just after the Big Bang.

One of the key goals of the LHC is the search for dark matter, a mysterious form of matter that makes up about 27% of the universe, yet has not been directly observed. Scientists, like physicist Ashutosh Kotwal, are trying to uncover the nature of this matter using sophisticated detectors that act as giant three-dimensional digital cameras. They continuously capture streams of particles created in proton collisions, hoping to spot invisible traces of dark matter.

The LHC allows researchers to search for dark matter using techniques such as "missing momentum." This refers to situations where there is a lack of energy and momentum in the detected particles, which may suggest the presence of invisible dark matter. Researchers analyze the data using sophisticated algorithms and artificial intelligence to filter millions of collisions and retain those that might contain hints of dark matter.

Recent research at the LHC includes the study of dark photons, hypothetical particles that could be produced by the decay of Higgs bosons. These dark photons are considered exotic because they do not belong to the standard model of particle physics. They could provide new insights into the structure of the universe and the nature of dark matter.

Additionally, the LHC has recently increased its collision energy to a record 13.6 TeV, allowing for deeper exploration of quark-gluon plasma, a state of matter that existed in the first few microseconds after the Big Bang. This research not only helps us understand the early moments of the universe but can also contribute to more precise measurements of the properties of dark matter and other exotic particles.

Despite significant progress, dark matter remains one of the greatest mysteries of modern physics. Scientists believe that its detection requires a combination of different approaches, including experiments in accelerators like the LHC, as well as astrophysical observations through telescopes on Earth and in space. Through these efforts, they hope to finally illuminate the dark side of the universe.

In addition to technological innovations in detectors, researchers plan to implement new systems such as "track trigger" algorithms, which use artificial intelligence to quickly identify and track transient particle traces. These systems enable the selection of the most important data in real-time, significantly increasing the efficiency of detecting potential evidence of dark matter.

Kotwal and his team are currently working on developing a prototype of this device, and it is expected that the complete system will be ready for installation in the LHC detectors in the coming years. With the continuous improvement of the performance of accelerators and detectors, scientists believe they are getting closer to answering the question of the existence and nature of dark matter.

This research is crucial for understanding the fundamental structure of the universe and could open the door to new physical theories that would expand our knowledge beyond the currently accepted standard model of particle physics.

Source: Duke University

Creation time: 01 August, 2024
Note for our readers:
The Karlobag.eu portal provides information on daily events and topics important to our community. We emphasize that we are not experts in scientific or medical fields. All published information is for informational purposes only.
Please do not consider the information on our portal to be completely accurate and always consult your own doctor or professional before making decisions based on this information.
Our team strives to provide you with up-to-date and relevant information, and we publish all content with great dedication.
We invite you to share your stories from Karlobag with us!
Your experience and stories about this beautiful place are precious and we would like to hear them.
Feel free to send them to us at karlobag@ karlobag.eu.
Your stories will contribute to the rich cultural heritage of our Karlobag.
Thank you for sharing your memories with us!

AI Lara Teč

AI Lara Teč is an innovative AI journalist of the Karlobag.eu portal who specializes in covering the latest trends and achievements in the world of science and technology. With her expert knowledge and analytical approach, Lara provides in-depth insights and explanations on the most complex topics, making them accessible and understandable for all readers.

Expert analysis and clear explanations
Lara uses her expertise to analyze and explain complex scientific and technological topics, focusing on their importance and impact on everyday life. Whether it's the latest technological innovations, research breakthroughs, or trends in the digital world, Lara provides thorough analysis and explanations, highlighting key aspects and potential implications for readers.

Your guide through the world of science and technology
Lara's articles are designed to guide you through the complex world of science and technology, providing clear and precise explanations. Her ability to break down complex concepts into understandable parts makes her articles an indispensable resource for anyone who wants to stay abreast of the latest scientific and technological developments.

More than AI - your window to the future
AI Lara Teč is not only a journalist; it is a window into the future, providing insight into new horizons of science and technology. Her expert guidance and in-depth analysis help readers understand and appreciate the complexity and beauty of the innovations that shape our world. With Lara, stay informed and inspired by the latest developments that the world of science and technology has to offer.