Advances in solar technology: a new system in Würzburg

Advances in solar technology: a new light collection system that uses the full spectrum of visible light developed in Würzburg

Researchers from Würzburg have made significant progress in solar technology by developing an innovative light gathering system. The new system uses the full spectrum of visible light, enabling a more efficient conversion of solar energy into electricity, which is an important step towards a more sustainable future.

Advances in solar technology: a new light collection system that uses the full spectrum of visible light developed in Würzburg
Photo by: Domagoj Skledar/ arhiva (vlastita)

Researchers from Würzburg, working on the Bavarian initiative Solar Technologies Go Hybrid, report progress in using solar energy: they have developed an innovative light harvesting system. To efficiently convert sunlight into electrical energy or other forms of energy, the first step is an efficient light harvesting system. Ideally, this system should be panchromatic, meaning it absorbs the entire spectrum of visible light. Natural models for this are light-harvesting antennas in plants and bacteria. They capture a wide spectrum of light for photosynthesis but are very complex in structure and require many different colors to transfer the energy of absorbed light to the central point. Human-developed light-harvesting systems also have drawbacks: although inorganic semiconductors such as silicon absorb panchromatically, they absorb light weakly. Very thick layers of silicon in the micrometer range are required to absorb enough light energy, making solar cells relatively bulky and heavy. Organic dyes suitable for solar cells are much thinner: their layer thickness is only about 100 nanometers. However, they can barely absorb a wide spectrum of light and are therefore not particularly efficient.

Thin layer absorbs a lot of light energy
Researchers at Julius-Maximilians-Universität (JMU) in Würzburg, Germany, have presented an innovative light-harvesting system in the journal Chem that differs significantly from previous systems. "Our system has a band structure similar to that of inorganic semiconductors. This means it absorbs light panchromatically across the entire visible range and uses the high absorption coefficients of organic dyes. As a result, it can absorb a large amount of light energy in a relatively thin layer, similar to natural light-harvesting systems," says JMU chemistry professor Frank Würthner. His team from the Institute of Organic Chemistry / Center for Nanosystem Chemistry designed the light-harvesting system at JMU and investigated it together with the group of Professor Tobias Brixner from the Institute of Physical and Theoretical Chemistry.

Four colors in an ingenious arrangement
Simply put, the innovative light-harvesting antenna from Würzburg consists of four different merocyanine dyes that are folded and arranged close to each other. The complex arrangement of molecules enables ultra-fast and efficient energy transfer within the antenna. The researchers named the prototype of the new light-harvesting system URPB. The letters represent the wavelengths of light absorbed by the four dye components of the antenna: U for ultraviolet, R for red, P for purple, and B for blue.

Proven performance through fluorescence
Researchers proved that their new light-harvesting system works so well by measuring the so-called fluorescence quantum yield. This involves measuring how much energy the system emits in the form of fluorescence. This can provide conclusions about the amount of light energy the system has previously collected. Result: the system converts 38 percent of the radiated light energy into fluorescence across a broad spectral range - the four colors on their own, on the other hand, achieve less than one percent to a maximum of three percent. The right combination and skillful spatial arrangement of dye molecules in the layer make a big difference.

Source: Faculty of Chemistry and Pharmacy, Würzburg

Erstellungszeitpunkt: 02 July, 2024
Hinweis für unsere Leser:
Das Portal Karlobag.eu bietet Informationen zu täglichen Ereignissen und Themen, die für unsere Community wichtig sind. Wir betonen, dass wir keine Experten auf wissenschaftlichen oder medizinischen Gebieten sind. Alle veröffentlichten Informationen dienen ausschließlich Informationszwecken.
Bitte betrachten Sie die Informationen auf unserem Portal nicht als völlig korrekt und konsultieren Sie immer Ihren eigenen Arzt oder Fachmann, bevor Sie Entscheidungen auf der Grundlage dieser Informationen treffen.
Unser Team ist bestrebt, Sie mit aktuellen und relevanten Informationen zu versorgen und wir veröffentlichen alle Inhalte mit großem Engagement.
Wir laden Sie ein, Ihre Geschichten aus Karlobag mit uns zu teilen!
Ihre Erfahrungen und Geschichten über diesen wunderschönen Ort sind wertvoll und wir würden sie gerne hören.
Sie können sie gerne senden an uns unter karlobag@karlobag.eu.
Ihre Geschichten werden zum reichen kulturellen Erbe unseres Karlobag beitragen.
Vielen Dank, dass Sie Ihre Erinnerungen mit uns teilen!

AI Lara Teč

AI Lara Teč is an innovative AI journalist of the Karlobag.eu portal who specializes in covering the latest trends and achievements in the world of science and technology. With her expert knowledge and analytical approach, Lara provides in-depth insights and explanations on the most complex topics, making them accessible and understandable for all readers.

Expert analysis and clear explanations
Lara uses her expertise to analyze and explain complex scientific and technological topics, focusing on their importance and impact on everyday life. Whether it's the latest technological innovations, research breakthroughs, or trends in the digital world, Lara provides thorough analysis and explanations, highlighting key aspects and potential implications for readers.

Your guide through the world of science and technology
Lara's articles are designed to guide you through the complex world of science and technology, providing clear and precise explanations. Her ability to break down complex concepts into understandable parts makes her articles an indispensable resource for anyone who wants to stay abreast of the latest scientific and technological developments.

More than AI - your window to the future
AI Lara Teč is not only a journalist; it is a window into the future, providing insight into new horizons of science and technology. Her expert guidance and in-depth analysis help readers understand and appreciate the complexity and beauty of the innovations that shape our world. With Lara, stay informed and inspired by the latest developments that the world of science and technology has to offer.